
44 The Delphi Magazine Issue 51

The Observer Pattern
Making the most of design patterns in Delphi
by Peter Hinrichsen

An excellent indication of the
quality, efficiency and cost

effectiveness of a software pro-
ject’s internal design and structure
is the amount of code that can be
reused for subsequent projects.
The use of design patterns is an
excellent way to develop code that
can be transferred from project to
project.

In my early days of developing
with Delphi, I had a single unit of
utilities (string manipulation, reg-
istry processing, custom dialogs,
etc), and some custom compo-
nents, which I took from project to
project. I would reuse functions
like tiMixedCase, that converts a
string into upper and lower case
(Like This), but when it came to
database access, business objects
and GUI development, I had to start
from scratch every time. To maxi-
mise the reuse of code, what was
needed was an application frame-
work that would be versatile
enough to be applied to any pro-
ject with a small amount of
customisation.

About a year ago, I had my first
introduction to design patterns
and very quickly learnt that there
was a way to develop an applica-
tion framework, which could be
reused and tailored to match the
needs of most projects. Two pat-
terns that can now be found in
nearly all my work are the single-
ton and factory patterns; these
have both been discussed in past
issues of The Delphi Magazine.

In this article, we are going to dis-
cuss the observer pattern, as intro-
duced in the ‘Gang of Four’ book
(hereafter GoF, see the reference at
the end of the article).

The observer pattern provides a
powerful technique for decoupling
the presentation layer of an appli-
cation from the business objects or
the data modelled by the
application, while still managing to
keep the separate components of

the app consistent as the data
changes.

The Intent Of The Observer
To quote from GoF, the intent of
the observer pattern is to ‘define a
one-to-many dependency between
objects so that when one object
changes state, all its dependants
are notified and updated automati-
cally.’ Figure 1 (taken from GoF) is
the best illustration of this that I
have seen.

The diagram shows a business
object model (called the subject),
which contains some data we want
to view in a variety of ways. There
are three observers, each display-
ing the content of the subject in a
different way. One observer
enables us to browse the data in a
grid or listview, the other two rep-
resent the data as a pie graph and
bar graph respectively.

Motivation
There are many ways to achieve
this functionality in Delphi. An
obvious option is to create three
forms, one with a TDBGrid and two
with TDBChart components. Next,
drop a TDataSource and TTable or
TQuery on a TDataModue, then link all
the elements together. The three
forms are all connected to the
same TDataSource, which is in turn
attached to a file-based table or the
result of an SQL query against
a DBMS. The
TDataSource is
responsible for
keeping all the
pieces synchro-
nized, a task that
it does very well.

There are,
however, sev-
eral problems
with this
approach. As

our application grows we find
maintenance difficult because of
the tight coupling between the GUI
and the database. We have also
built in a dependency on data-
aware controls, which are good for
prototypes and low volume appli-
cations, but result in an applica-
tion which is difficult to maintain
and causes excessive network traf-
fic when used in large, client/
server projects.

The solution is to partition the
application so that there is a busi-
ness object model between the
database and the user interface.
This solution reduces dependen-
cies, but also means we no longer
have access to the TDataSource to
manage synchronisation of the
various forms when changes are
made to the underlying data.

The answer to this problem lies
in the observer pattern. When the
observer pattern has been
implemented, the observers will
always be synchronised with the
subject. The subject will have no
knowledge of the specific observ-
ers, except that they descend from
an abstract observer, and hence all
have certain common elements in
the interface. The observers will
know about the subject (after all,
they must if they are going to dis-
play its data) but they will not
know anything about each other.
We will be able to make changes to

➤ Figure 1

November 1999 The Delphi Magazine 45

the observers, or add and remove
them with no risk of breaking any
existing code.

The observers are also able to
make changes to the data con-
tained in the subject, then the sub-
ject will notify all the other
observers that a change has been
made and that they should
resynchronise themselves with
the subject. This may seem like a
lot of work, just to reproduce the
functionality of the TDataSource,
but if there are good reasons to
avoid data-aware controls, it is
worth the effort.

Solving A Business Problem
Sometimes the best way to discuss
a new concept is to put it into the
context of a problem we are
familiar with, so we will use a small
application to track the value of a
share portfolio as a means to
discuss the observer.

Our application will show the
current share price of five blue
chip Australian companies. The
number of shares of each company
in our portfolio will be shown,
along with the calculated value of
the shares and the total value of
the portfolio. The user is able to
adjust the amount of each stock
he/she is holding to balance the
portfolio between the different
industry sectors. This application
is shown in Figure 2.

The example
shows an MDI
application with
three read-only
observers (I call
them read-only
because they can
see the data but
can’t change it). A
fourth observer,
shown in Figure 3,
will read the sub-
ject as well as
update it, as its
slider bars are
moved (the form to
edit a record can be

loaded by double clicking the
grid). I found this application good
fun to play with, as it is possible to
have dozens of forms on the
screen, all updating as you use the
mouse to adjust a slide bar.

The UML for the business object
model we will ‘observe’ is shown in
Figure 4. Our application contains
a single TPortfolio object, which is
really just a holder for a list of
TStockTrans objects. The TStock-
Trans class has the properties
StockCode, StockName, Price and
Quantity, as well as the derived
property Value, which is simply
Price*Quantity. These two objects
combine to form an OO replace-
ment for the rows and columns of a
TTable or TQuery.

If you are new to UML, you will
need to know that the arrow with
the ◆ and * tells us that the
TPortFolio owns
0..n TStockTrans
objects. Public
properties and
methods are shown
in the lower box for
each class.

A Simple
Observer
The UML in Figure 5
gives an overview

of the framework of the application
we are studying.

There is a TSubjectAbstract
class and a TObserverAbstract
class, which have a dependency
between them that is shown by the
two arrows joining the two classes.
Descending from these are the
concrete TPortfolio and the
TObservers.

The TPortfolio object is created
by the application as a singleton,
so there is only one copy in exis-
tence. The four observers are cre-
ated as MDI children by a button
click in the main form. Some more
detailed UML for the TSubject-
Abstract and TObserverAbstract is
shown in Figure 6. We will now look
at the implementation of the
TSubjectAbstract, then the TObs-
erverAbstract. The concrete
observers and the application
framework that will tie all the
pieces together will follow this.

The interface of the TSubject-
Abstract is shown in Listing 1.
There is a private TList called
FObserversused to hold pointers to
all the observers currently inter-
ested in this subject. There are
three methods of interest:
AttachObserver, DetachObserver
and UpdateObservers.

AttachObserver takes a single
TObserverAbstract as a parameter
and adds it to the TList (after
checking to make sure it has not
already been added). I added an
Assert to check that the observer
was not already attached to help in
debugging. Delphi will remove the
Assertion for a release build of the
project by clearing the Assertions
checkbox on the compiler page of
the project | options dialog. The

➤ Left, Top:
Figure 2

➤ Left, Bottom:
Figure 3

**……

TTotal Realotal Real
stocks: TListstocks: TList

TStock TTStock Transrans

……

……

……

Price: RealPrice: Real
Qty: IntegerQty: Integer
StockCode: StringStockCode: String
StockName: StringStockName: String
VValue: Realalue: Real

The TPorThe TPortfoliotfolio
maintains a TListmaintains a TList
of TStockTof TStockTransrans

The TStockTThe TStockTrans classrans class
is a holder foris a holder for
inforinformation about amation about a
stock.stock.

TPortfolioTPortfolio

➤ Figure 4

46 The Delphi Magazine Issue 51

implementation of AttachObserver
is shown in Listing 2.

DetachObserver also takes a
TObserverAbstract as a parameter
and removes the pointer to the
observer from the list. The imple-
mentation is shown in Listing 3.

UpdateObservers scans the TList
and calls the DataToObserver
method for each observer in the
list. This is shown in Listing 4.

That is about all there is to
TSubjectAbstract class, so we’ll
look at the TObserverAbstract class
next. The class interface is shown
in Listing 5. TObserverAbsract
descends from TForm and has some
code in the form’s OnClose,
OnDestroy and OnShow events.

Because this is an MDI applica-
tion, and we have no control over
how many instances of a form the
user may want, or when the forms
will be closed, we set the Action
parameter in FormClose to caFree so
the form self-destructs when it is
closed. FormShow contains a call to
DataToObserver in order to ensure
that the form contains the latest
view of the data when it becomes
visible. FormDestroy contains the
line Subject.DetachObserver which
removes it from the list of

called FSubject and the SetSubject
method that holds a pointer to the
subject we are interested in
observing. SetSubject contains the
usual FSubject := Value line as well
as a call to Subject.Attach-
Observer(self). SetSubject is
shown in Listing 6.

The last method in TObserver-
Abstract that we must know about
is the virtual abstract procedure
DataToObserver. A virtual method is
one which can be overridden and
extended by a child class and an
abstract method has an interface
but no implementation (or code).
A virtual abstract must be
implemented in the child class
otherwise the compiler will com-
plain and an exception will be
raised at runtime. DataToObserver
contains the code to read the sub-
ject into the observer for display.

Because we have four observ-
ers, we must write four separate
implementations of DataTo-
Observer. Two of these will copy
data into a TChart for display; the
code for this is in Listing 7.

Notice how we must typecast
(Subject as TPortfolio). We could
use the alternative (and, I think,

TSubjectAbstractTSubjectAbstract TObserverAbstractTObserverAbstract

TForm Observer Bar GraphTForm Observer Bar Graph

TForm Observer GridTForm Observer GridTForm Observer EditTForm Observer Edit

TForm Observer Pie GraphTForm Observer Pie GraphTPortfolioTPortfolio

TStock TTStock Transrans

**

➤ Above: Figure 5 ➤ Below: Figure 6

TSubject AbstractTSubject Abstract

// AttachObser// AttachObserver:ver:
FObserFObservers.Add(oObservers.Add(oObserver);ver);

TSubject ConcrTSubject Concreteete

TObserver AbstractTObserver Abstract

TObserver ConcrTObserver Concreteete

TFormTForm

-FObservers: TList-FObservers: TList

AttachObserver(TObserverAbstract)AttachObserver(TObserverAbstract)
DetachObserver9TDetachObserver9TobserverAbstract)observerAbstract)
UpdatedObserversUpdatedObservers

DataTDataToObserveroObserver
Subject: TSubjectAbstractSubject: TSubjectAbstract

// DetachObser// DetachObserverver
FObserFObservers.Delete(oObservers.Delete(oObserver);ver);

// UpdateObser// UpdateObserversvers
for all in FObserfor all in FObserversvers
DataTDataToObseroObserver;ver;

TSubjectAbstract = class(TObject)
private
FObservers : TList ;

protected
public
Constructor Create ;
Destructor Destroy ; override ;
Procedure AttachObserver(Sender :TObserverAbstract);
Procedure DetachObserver(Sender :TObserverAbstract);
Procedure UpdateObservers ;

end;

procedure TSubjectAbstract.AttachObserver(Sender: TObserverAbstract);
Var i : integer ;
begin
i := FObservers.IndexOf(Sender) ;
Assert(i = -1, 'Observer already attached') ;
FObservers.Add(Sender) ;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

procedure TSubjectAbstract.DetachObserver(Sender: TObserverAbstract);
Var i : integer ;
begin
i := FObservers.IndexOf(Sender) ;
Assert(i <> -1, 'Observer not attached') ;
FObservers.Delete(i) ;

end;

procedure TSubjectAbstract.UpdateObservers;
var i : integer ;
begin
for i := 0 to FObservers.Count - 1 do
TObserverAbstract(FObservers[i]).DataToObserver ;

end;

➤ Above: Listing 3 ➤ Below: Listing 4

observers the subject must notify
of updates.

There is the property Subject
with a corresponding variable

48 The Delphi Magazine Issue 51

TObserverAbstract = class(TForm)
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);

private
FSubject : TSubjectAbstract ;
procedure SetSubject(const Value: TSubjectAbstract);

public
procedure DataToObserver ; virtual ; abstract ;
property Subject : TSubjectAbstract read FSubject write SetSubject ;

end;

➤ Above: Listing 5 ➤ Below: Listing 6

more readable) syntax TPort-
folio(Subject) but if, for some
reason, Subject can not be type-
cast as TPortFolio, then TPort-
folio(Subject) will cause an
access violation giving us very
little information about what the
error was or where it occurred.
The typecast (Subject as
TPortfolio) will raise an ‘invalid
type conversion’ exception, which
has more meaning while we are
debugging than a big, bad, access
violation.

The listview observer has some
equally simple code in the
DataToObserver method, which is
shown in Listing 8.

As you can see, in its simplest
form, the observer pattern is very
easy to implement. In some situa-
tions, however, the observer may
also need to update the subject, as
required in the form in Figure 3.
This form features three TEdits
(which you can’t edit directly
because their enabled property is
set to false) and two TScrollBars
that let the user change the value
of the Quantity or Current Price
fields.

Before learning about the
observer pattern (and its close
cousin, the model-view-controller)
I would have added code to the
TScrollBar’s OnChange event to
update the value in the corre-
sponding TEdit. This new value
would have been written to the
subject when the form’s OK button
was clicked. As one of the aims of
the observer is to enable many
views of some dynamically chang-
ing data, the TScrollBar’s OnChange
event causes the subject to be
updated, then calls the subject’s
UpdateObservers method to ensure
consistencey between all the
observers. Listing 9 shows both
the edit form’s DataToObserver
method, as well as one of the
TScrollBar’s OnChange events.

Other Considerations
Once again, the observer pattern is
very simple to implement at this
level. However, when you start
thinking more deeply about the
pattern, there are several
questions that require further
attention.

If you have loaded the source
code from the companion disk, you
will see that the application per-
forms well with a single instance of
each observer on the screen. All
the observers dynamically change
as a scroll bar is adjusted with the
mouse. Every time we make even a
small change to the subject, all the
observers must update them-
selves.

What would happen if the sub-
ject was very complex, or the
observers took more processing
power to repaint themselves? Try
opening ten instances of each
observer, click Windows | Tile, and
experiment with moving the
scrollbars. The performance of the
system is ground down by all the
unnecessary updating of observ-
ers. There are several solutions to
this problem.

The simplest solution is to add a
TTimer to the edit form so that each
time a value is changed the timer is
restarted. The timer may wait for a
second before updating the sub-
ject and sending the message to
update the observers. This gives
the user the feeling that all the
observers change with each click
of the mouse, but unnecessary
updates to all observers while the
user is changing a value are
avoided.

The more sophisticated solution
is for the subject to know exactly
what changed and notify the
observers of the details of the
change, instead of forcing them to
re-read all the subject’s data and
repaint themselves totally from
scratch.

The timer solution is very easy
to implement and is my preferred
option in most circumstances.

The idea of notifying the
observers of what has changed
may be elegant, but requires
careful design work and plenty of
effort to implement. If the subject
is to notify the observers of what
has changed, it is necessary for the
subject to have some knowledge of
what the observer is displaying.
This will lead to tighter coupling of
the subject to the observer and
should be avoided.

More intelligence must be built
into our framework to improve the
efficiency of updates. There are
three places where we can put this
intelligence.

First, it can be put in the code
that is updating the subject. The
timer approach suggested above
is a quick and easy solution.

Second, the observer could
remember the state of the subject

procedure TObserverAbstract.SetSubject(const Value: TSubjectAbstract);
begin
FSubject := Value;
Subject.AttachObserver(self) ;

end;

procedure TFormObserverBarGraph.DataToObserver ;
var
i : integer ;
lStockTrans : TStockTrans ;

begin
chart1.series[0].clear ;
with (Subject as TPortfolio) do begin
for i := 0 to Stocks.Count - 1 do begin
lStockTrans := Stocks.Items[i] ;
chart1.series[0].add(lStockTrans.Value,lStockTrans.StockCode,GetColour(i));

end ;
end ;

end;

➤ Listing 7

November 1999 The Delphi Magazine 49

when it last checked and compare
old and new values, only repainting
the values that have changed. This
is easy to do with a listview’s
OnData event (as long as we are
changing values, not adding new
ones or deleting existing ones), but
much harder to do with the TChart
based observers.

Third, the subject could have a
SetValue method attached to each
property, which would be respon-
sible for sending the appropriate
message to the observers. This
would work for the share portfolio
example, but would be challenging
to implement once we expand the
application to allow the creation or
deletion of rows, or the nesting of
objects within each other.

Another complication that is
worth considering is how to handle
the situation where the subject is
contained in another application,
such as a COM server, or a remote
multi-tier application server. The
success of our implementation
depends on the subject being able
to maintain a list of pointers to the
interested objects. This becomes

more difficult within a distributed
environment.

Push And Pull Observers
In the implementation of the
observer we have discussed, the
subject notifies all its observers
that a change has taken place and it
is up to the observers to interro-
gate the subject to work out what
has changed, and how to repaint
themselves. This is known as a
‘pull’ implementation because the
observer must ‘pull’ the necessary
information out of the subject.

The ‘pull’ observer is easy to
implement, but may be inefficient
because of the processing over-
head it causes. Every observer
must determine what part of the
subject has changed, or alterna-
tively not bother to work out what
has changed, and repaint itself
from scratch with each and every
notification.

A more efficient implementation
of the observer, often called a
‘push’ implementation for obvious
reasons, requires the subject to
send details of what has changed

to the observers. This will reduce
the chance of unnecessary
updates, but causes tighter cou-
pling between the subject and
observers. The ‘push’ observer is
also much more challenging to
implement than the ‘pull’
observer.

Summary
We have studied a simple imple-
mentation of a ‘pull’ observer that
is both easy to implement and
encourages loose coupling
between the subject and the
observers.

We have seen that while the pull
observer has several advantages,
there are situations where it may
be too inefficient because of the
need for observers to unnecessar-
ily repaint themselves in response
to minor changes in the subject.
We have looked at several solu-
tions to this inefficiency, including
the use of a timer to buffer the
updates as well as the use of a push
observer, which is the most
efficient, but is much more difficult
to implement.

50 The Delphi Magazine Issue 51

Good luck with the observer
pattern. Please do contact me
if you have any comments, or
would like to discuss this pattern
in more detail.

procedure TFormObserverGrid.DataToObserver;
var
i : integer ;
lListItem : TListItem ;
lStockTrans : TStockTrans ;

begin
LV.Items.Clear ;
with (Subject as TPortfolio) do begin
for i := 0 to Stocks.Count - 1 do begin
lStockTrans := Stocks.Items[i] ;
lListItem := LV.Items.Add ;
lListItem.Caption := lStockTrans.StockCode ;
lListItem.SubItems.Add(lStockTrans.StockName) ;
// Add more subItems . . .

end ;
end ;

end;

➤ Above: Listing 8 ➤ Below: Listing 9

procedure TFormObserverGrid.DataToObserver;
var
i : integer ;
lListItem : TListItem ;
lStockTrans : TStockTrans ;

begin
LV.Items.Clear ;
with (Subject as TPortfolio) do begin
for i := 0 to Stocks.Count - 1 do begin
lStockTrans := Stocks.Items[i] ;
lListItem := LV.Items.Add ;
lListItem.Caption := lStockTrans.StockCode ;
lListItem.SubItems.Add(lStockTrans.StockName) ;
// Add more subItems . . .

end ;
end ;

end;

Acknowlegements
The content of this article was
inspired by my ‘pattern mentor’,
Darius Zakrzewski who hosts the
Melbourne Patterns Group, a

discussion group that meets twice
a month to discuss the evolution of
the pattern language of program-
ming (PLOP) and the use of design
patterns to solve real-life business
problems. The Melbourne Pat-
terns Group website is at www.
win32dev.com/patterns/. It con-
tains some useful links to other
sites that discuss the use of design
patterns in software development.

Peter Hinrichsen is a Certified
Inprise Consultant and director of
TechInsite P/L, a software
company that specialises in client/
server and objected oriented
application development in
Delphi. Peter works out of
Melbourne, Australia and may
be reached at peter_hinrichsen@
techinsite.com.au

Design Patterns – Element of Reus-
able Object Oriented Software, by
Gamma, Helm, Johnson & Vlissides.
Four authors, hence the name ‘Gang
of Four’ or GoF.

	The Intent Of The Observer
	Motivation
	Solving A Business Problem
	A Simple Observer
	Other Considerations
	Push And Pull Observers
	Summary
	Acknowlegements

